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ABSTRACT 

Electronic spin-pairing transition of iron in magnesiowüstite-(Mg,Fe)O has been recently 

studied with X-ray emission and Mössbauer spectroscopies under high pressures. While 

these studies reported a high-spin to low-spin transition of iron to occur at pressures 

above approximately 50 GPa, the width of the observed transition varies significantly. In 

particular, Kantor et al. [Phys. Rev. B 73, 100101 (2006)] reported that the transition in 

(Mg0.8,Fe0.2)O occurs over a pressure range of approximately 50 GPa in high-pressure 

Mössbauer measurements. To account for the discrepancy in the transition pressure, 

Kantor et al. reanalyzed the X-ray emission spectra by Lin et al. [Nature 436, 377 (2005)] 

using a simple spectral decomposition method and claimed that X-ray emission 

measurements are also consistent with a spin crossover of iron at high pressures. Here we 

show that the proposed fitting method is inadequate to describe the X-ray emission 

spectrum of the low-spin FeS2 and would give an erroneous satellite peak (Kβ’) intensity, 

leading to an artificial high-spin component and, consequently,  to invalid conclusions 

regarding the width of the pressure-induced transition in magnesiowüstite. Furthermore, 

we compare Kantor’s Mössbauer data with other recent high-pressure Mössbauer studies 

and show that the width of the transition can be simply explained by different 

experimental conditions (sample thickness, diameter, and hydrostaticity). 
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Pressure-induced electronic spin-pairing transitions of iron in magnesiowüstite-

(Mg,Fe)O have been reported by X-ray emission spectroscopy1-3, Mössbauer 

spectroscopy3-5, X-ray diffraction2,4, and theoretical calculations6-8. While these 

experimental studies all support that a high-spin to low-spin transition of iron occurs at 

pressures above approximately 50 GPa [1-5], the reported width of the transition varies 

significantly from 18 GPa [2-4] to approximately 55 GPa [5]. On the other hand, recent 

theoretical predictions suggest that the transition in magnesiowüstite would occur over a 

very narrow range of pressure at room temperature but would turn into spin crossover 

with an extended pressure range of approximately 30 to 50 GPa at the lower mantle 

temperatures7,8. Since magnesiowüstite is considered to constitute a considerable volume 

fraction of the Earth’s lower mantle (~20%), an understanding of the width of the 

transition is crucial to interpreting the consequent effects of the transition on the physical 

properties of magnesiowüstite in the Earth’s lower mantle. Here we comment on the 

recent high-pressure Mössbauer study of (Mg0.8,Fe0.2)O and the proposed alternative 

interpretation of the high-pressure X-ray emission spectra of (Mg0.75,Fe0.25)O [5]. We 

show that the proposed spectral decomposition method is inadequate, leading to an 

erroneous interpretation of the transition pressure, and that the wide range of the 

transition pressures observed in [5] can be alternatively explained by the very thick, large 

sample and non-hydrostatic experimental conditions. 

An electronic spin crossover of iron in (Mg0.8,Fe0.2)O has been reported to occur from 

approximately 55 GPa to 105 GPa by high-pressure Mössbauer studies [5]. To account 

for the wide transition pressure and the discrepancy between Mössbauer and X-ray 

emission studies, a simple spectral decomposition method using a Pearson-IV peak shape 

and a Gaussian peak shape is used to reanalyze the X-ray emission spectra reported by 
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Lin et al. [2]. Using the same decomposition method, we show that the X-ray emission 

spectrum of the low-spin FeS2, a commonly used standard in X-ray emission 

spectroscopy, can not be fitted with a simple Pearson-IV peak shape (Fig. 1(b)); a misfit 

occurs in the satellite peak region. Although the spectrum can be well fitted with two 

peaks, a Pearson-IV peak for the main Kβ1,3 peak and a Gaussian peak for the Kβ’ satellite 

peak as proposed by the authors [5], the use of the Gaussian peak produces an artificial 

high-spin component even though the sample is completely in the low-spin state (Fig. 

1(a)). Consequently, the two-peak fitting method used for decomposing the X-ray 

emission spectra of the low-spin (Mg0.75,Fe0.25)O would also give rise to an artificial, 

invalid satellite peak for the high-spin component with an average spin number of 

approximately one. That is, the fitting procedure with the Gaussian peak would always 

give a high-spin component and would not produce a single, complete low-spin 

component. As a matter of fact, independent analyses of the X-ray emission spectra of 

(Mg0.75,Fe0.25)O [2] using crystal-field multiplet calculations by G. Vanko, F. de Groot9, 

and J.P. Rueff10 give results that are in agreement with what Lin et al. [2] had reported 

and consistent with recent synchrotron Mössbauer studies of the same compostion3, as 

opposed to what is claimed by Kantor et al. [5]. 

To understand the electronic spin-pairing transition in the (Mg,Fe)O system, here we 

also report high-pressure X-ray emission spectra of (Mg0.95,Fe0.05)O (Fig. 2). The very 

dilute concentration of Fe2+ in the sample allows observation of the transition at relatively 

low pressures3. The details of the XES experimental setup and interpretations of the XES 

spectra of the Fe-Kβ lines are reported elsewhere2,3. All X-ray emission spectra of the 

sample were collected with the same system setup from the same sample, ensuring that 

the energy calibration remained intact through out the collection of the spectra. We 
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observed an energy decrease of ~1.6 eV in the Kβ1,3 main peak between 46 GPa and 55 

GPa (Fig. 2b). The integrated and normalized intensity of the satellite peak of iron (Kβ
’) 

in the sample as a function of pressure showed the presence of the satellite peak (Kβ
’) 

below 46 GPa and the absence of the satellite peak above 55 GPa, indicating a high-spin 

to low-spin transition of iron between 46 GPa and 55 GPa. The energy shift of the main 

Kβ1,3 peak across the spin transition has been predicted by theory and has been explained 

by the preservation of the center of gravity of the spectra: when the high-spin satellite 

intensity disappears, main peak shifts towards the center of gravity of the emission 

spectrum in order to keep the center of the mass of the emission line fixed11-13. The 

observation of the energy shift is consistent with the change of the satellite intensity and 

can be used as an additional line of evidence for the electronic spin-pairing transition. 

Furthermore, we have compared the abundance of the high-spin and low-spin states 

of iron in magnesiowüstite, as determined from recent high-pressure traditional4,5 and 

synchrotron3 Mössbauer spectroscopic measurements (Fig. 3). The range of the observed 

transition pressure varies significantly from 18 GPa at 300 K for (Mg0.75,Fe0.25)O [3], to 

20 GPa at 6 K for (Mg0.8,Fe0.2)O [4], to approximately 50 GPa at 300 K for 

(Mg0.8,Fe0.2)O [5]. The slight compositional variation in these experiments is unlikely to 

significantly affect the width of the transition and the transition pressure [3]. A narrower 

width of the transition was observed when a thin sample of 1 µm in thickness with an X-

ray source of 7 µm in diameter and NaCl pressure medium was used, in agreement with 

the X-ray emission studies, whereas a thick, large sample of 25 µm in thickness and 125 

µm in diameter without any pressure medium resulted in a transition pressure of 50 GPa 

[5], a much extended pressure range than other two studies3,4.  That is, experimental 
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conditions significantly affect the width of the transition. The width of the transition 

pressure of ~18 GPa in (Mg0.75,Fe0.25)O from Mössbauer spectroscopic measurements is 

also consistent with the X-ray emission measurements2,3,9. The thickness effects as well 

as non-hydrostatic conditions can also lead to difficulties in estimating the relative 

abundance of the high-spin and low-spin components using a linear modeling.  

In conclusion, we presented X-ray emission and Mössbauer data of magnesiowustite 

to show that the X-ray emission analysis method proposed by Kantor et al. [5] is ill-

founded and the extended width of the transition pressure in their Mössbauer 

measurements was due to very thick, large sample under non-hydrostatic conditions. 

Based on both high-pressure X-ray emission and Mössbauer results, we showed that the 

electronic spin-pairing transition of iron in (Mg0.75,Fe0.25)O should be completed in less 

than 18 GPa. 

 

We thank G. Vankó, F. de Groot, J.P. Rueff, and I. Lyubutin  for helpful discussions, 

This work at LLNL was performed under the auspices of the U.S. DOE by University of 

California and LLNL under Contract No. W-7405-Eng-48. 
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Figure Captions: 

FIG. 1. X-ray emission spectrum of the low-spin FeS2 at ambient conditions (black dots). 

(a) Red line, fitting with Kantor’s decomposition model5; Blue dashed-dotted line: fitting 

with a Pearson-IV peak; blue dotted line: fitting with a Gaussian peak; red dashed line: 

residuals. (b) Red line, fitting with a Pearson-IV peak; red dashed line: residuals. We note 

that FeS2 is known to be in low-spin state under ambient conditions. The fitting based on 

Kantor’s model gives an erroneous satellite peak (Figure 1(a), blue dotted line), whereas 

a misfit occurs in the satellite peak region when fitting with a single Pearson-IV peak 

(Figure 1(b)).  

FIG. 2. Representative X-ray emission spectra of Fe-Kβ collected from magnesiowüstite 

[(Mg0.95,Fe0.05)O] at high pressures. The spectrum at ambient conditions was measured 

outside the diamond anvil cell. The original spectra without normalization and energy 

shifting are plotted in the main panel. (a) Integrated and normalized intensity of the 

satellite peak as a function of pressure. The intensity of the satellite peak was obtained by 

subtracting each spectrum from the one at the highest pressure (low-spin state) [2]. The 

errors in integrated intensity were propagated from statistical errors in original spectra. 

(b) Energy shift of the main emission peak (Kβ1,3)  as a function of pressure. We note that 

the energy the Kβ1,3 of iron in (Mg0.95,Fe0.05)O  was located at ~7058 eV, and an energy 

decrease of ~1.6 eV was observed between 46 GPa and 55 GPa. 

FIG. 3. Abundance of high-spin and low-spin states of iron in magnesiowüstite, as 

determined from recent high-pressure Mössbauer spectroscopic measurements3-5. Open 

circles, (Mg0.75,Fe0.25)O at high pressures and 300 K [3]; open triangles, (Mg0.80,Fe0.20)O 
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at high pressures and 6 K [4]; dashed line, (Mg0.80,Fe0.20)O at high pressures and 300 K 

[5].  

 



Energy (eV)

7030 7040 7050 7060 7070 7080

In
te

ns
ity

 (a
rb

. u
ni

ts
)

FeS2
Fit
Gaussian
Pearson IV
Residuals

Energy (eV)

7030 7040 7050 7060 7070 7080

In
te

ns
ity

 (a
rb

. u
ni

ts
)

FeS2
Fit Pearson IV
Residuals

(a) (b)



FIG. 2
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